2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月18日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、已知直線l:3x-2y-5=0,圓C:,則C上到l的距離為1的點(diǎn)共有()
- A:1個(gè)
- B:2個(gè)
- C:3個(gè)
- D:4個(gè)
答 案:D
解 析:由題可知圓的圓心為(1,-1),半徑為2 ,圓心到直線的距離為,即直線過(guò)圓心,因此圓C上到直線的距離為1的點(diǎn)共有4個(gè).
2、的展開(kāi)式中,x2的系數(shù)為()
- A:20
- B:10
- C:5
- D:1
答 案:C
解 析:二項(xiàng)展開(kāi)式的第二項(xiàng)為,故展開(kāi)式中的x2的系數(shù)為5.
3、過(guò)點(diǎn)P(2,3)且在兩軸上截距相等的直線方程為() ?
- A:
- B:
- C:x+y=5
- D:
答 案:B
解 析:選項(xiàng)A中,在x、y 軸上截距為 5.但答案不完整 所以選項(xiàng)B中有兩個(gè)方程,
在x軸上橫截距與y軸上的縱截距都為0,也是相等的
選項(xiàng)C,雖然過(guò)點(diǎn)(2,3),實(shí)質(zhì)上與選項(xiàng)A相同.選項(xiàng) D,轉(zhuǎn)化為:
答案不完整
?
4、中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸,且一個(gè)頂點(diǎn)(3,0),虛軸長(zhǎng)為8的雙曲線方程是()
- A:
- B:
- C:
- D:
答 案:B
解 析:雙曲線有一個(gè)頂點(diǎn)為(3,0),因此所求雙曲線的實(shí)軸在x軸上,可排除A、C選項(xiàng),又由于虛軸長(zhǎng)為8,故b=4,即b2=16,故雙曲線方程為
主觀題
1、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬
答 案:如圖,
∵∠C=180°-30°-75°=75°
∴△ABC為等腰三角形,則AC=AB=120m
過(guò)C做CD⊥AB,則由Rt△ACD可求得CD=
=60m,
即河寬為60m
?
2、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
3、已知直線l的斜率為1,l過(guò)拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為
由題意得l的方程為
因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為
(II)由
,得
設(shè)A(x1,y1),B(x2,y2),則
因此
4、建筑一個(gè)容積為8000,深為6m的長(zhǎng)方體蓄水池,池壁每
的造價(jià)為15元,池底每
的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長(zhǎng)x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域
?
答 案:
填空題
1、lg(tan43°tan45°tan47°)=() ?
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
2、函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)共有()
?
答 案:2
解 析:當(dāng)x=0時(shí),y=-2=-1,故函數(shù)與y軸交于(0,-1)點(diǎn),令y=0,則有
故函數(shù)與x軸交于(1,0) 點(diǎn),因此函數(shù)
與坐標(biāo)軸的交點(diǎn)共有 2個(gè).