2023年成考高起點每日一練《數(shù)學(理)》10月4日專為備考2023年數(shù)學(理)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。
單選題
1、函數(shù)的反函數(shù)是()
- A:
- B:
- C:
- D:
答 案:A
解 析:,由于x≤0,故
把x與y互換,得所求反函數(shù)為
2、設集合A={0,1},B={0,1,2},則A∩B=() ?
- A:{1,2}
- B:{0,2}
- C:{0,1}
- D:{0,1,2}
答 案:C
解 析:
3、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),則a,b的值為 ?
- A:a=2,b=1
- B:a=1,b=1
- C:a=1,b= 2
- D:a=1,b=5
答 案:C
解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因為M中無“1”元素,而有“a”元素,只有a=1 而N中無“2”元素,而有“b元素”,只有b=2 ?
4、函數(shù)的定義域是()
- A:{x|-3<x<-1}
- B:{x|x<-3或x>-1}
- C:{x|1<x<3}
- D:{x|x<1或x>3}
答 案:D
解 析:由對數(shù)函數(shù)的性質可知,解得x>3或x<1,因此函數(shù)的定義域為{x|x<1或x>3}
主觀題
1、已知數(shù)列的前n項和
求證:
是等差數(shù)列,并求公差和首項。
?
答 案:
?
2、已知直線l的斜率為1,l過拋物線C:的焦點,且與C交于A,B兩點.(I)求l與C的準線的交點坐標;
(II)求|AB|.
答 案:(I)C的焦點為,準線為
由題意得l的方程為
因此l與C的準線的交點坐標為
(II)由
,得
設A(x1,y1),B(x2,y2),則
因此
3、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得
所以AB =4.因此
所以
4、某工廠每月生產(chǎn)x臺游戲機的收入為R(x)=+130x-206(百元),成本函數(shù)為C(x)=50x+100(百元),當每月生產(chǎn)多少臺時,獲利潤最大?最大利潤為多少?
?
答 案:利潤 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=
+80x-306
法一:用二次函數(shù)
當a<0時有最大值
是開口向下的拋物線,有最大值
法二:用導數(shù)來求解
因為x=90是函數(shù)在定義域內(nèi)唯一駐點
所以x=90是函數(shù)的極大值點,也是函數(shù)的最大值點,其最大值為L(90)=3294
?
填空題
1、lg(tan43°tan45°tan47°)=() ?
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0
2、不等式的解集為()
?
答 案:
解 析: