2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》9月29日專(zhuān)為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、已知,則sin2α=()
- A:
- B:
- C:
- D:
答 案:D
解 析:兩邊平方得
,故
2、從點(diǎn)M(x,3)向圓作切線(xiàn),切線(xiàn)的最小值等于()
?
- A:4
- B:
- C:5
- D:
答 案:B
解 析:如圖,相切是直線(xiàn)與圓的位置關(guān)系中的一種,此題利用圓心坐標(biāo)、半徑,求出切線(xiàn)長(zhǎng). 由圓的方程知,圓心為B(-2,-2),半徑為1,設(shè)切點(diǎn)為A,
由勾股定理得,
當(dāng)x+2=0時(shí),MA取最小值,最小值為
?
3、下列函數(shù)中,為減函數(shù)的是()
- A:
- B:
- C:
- D:
答 案:C
解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時(shí),在定義域內(nèi),對(duì)數(shù)函數(shù)為減函數(shù).
4、5名高中畢業(yè)生報(bào)考3所院校,每人只能報(bào)一所院校,則有()種不同的報(bào)名方法 ?
- A:
- B:
- C:
- D:
答 案:C
解 析:將院??闯稍?高中生看成位置,由重復(fù)排列的元素、位置的條件口訣: “元素可挑剩,位置不可缺”,重復(fù)排列的種數(shù)共有種,即將元素的個(gè)數(shù)作為底數(shù),位置的個(gè)數(shù)作為指數(shù).即:元素(院校)的個(gè)數(shù)為 3,位置(高中生)的個(gè)數(shù)為5,共有
種。
?
主觀題
1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線(xiàn)y=f(x)在點(diǎn)((1,f(1))處的切線(xiàn)方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)
時(shí),f'(x)
單調(diào)遞減,在區(qū)間
單調(diào)遞增.因此f(x)在
時(shí)取得極小值
2、已知直線(xiàn)l的斜率為1,l過(guò)拋物線(xiàn)C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線(xiàn)為
由題意得l的方程為
因此l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo)為
(II)由
,得
設(shè)A(x1,y1),B(x2,y2),則
因此
3、已知等差數(shù)列前n項(xiàng)和
(Ⅰ)求這個(gè)數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列第六項(xiàng)到第十項(xiàng)的和
答 案:
?
4、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬
答 案:如圖,
∵∠C=180°-30°-75°=75°
∴△ABC為等腰三角形,則AC=AB=120m
過(guò)C做CD⊥AB,則由Rt△ACD可求得CD=
=60m,
即河寬為60m
?
填空題
1、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?
答 案:
解 析:由于a//b,故
2、不等式的解集為()
?
答 案:
解 析: