12職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類(lèi)成考高起點(diǎn) → 2023年09月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年09月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/09/29 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》9月29日專(zhuān)為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、已知,則sin2α=()

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:兩邊平方得,故

2、從點(diǎn)M(x,3)向圓作切線(xiàn),切線(xiàn)的最小值等于() ?

  • A:4
  • B:
  • C:5
  • D:

答 案:B

解 析:如圖,相切是直線(xiàn)與圓的位置關(guān)系中的一種,此題利用圓心坐標(biāo)、半徑,求出切線(xiàn)長(zhǎng). 由圓的方程知,圓心為B(-2,-2),半徑為1,設(shè)切點(diǎn)為A, 由勾股定理得, 當(dāng)x+2=0時(shí),MA取最小值,最小值為 ?

3、下列函數(shù)中,為減函數(shù)的是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時(shí),在定義域內(nèi),對(duì)數(shù)函數(shù)為減函數(shù).

4、5名高中畢業(yè)生報(bào)考3所院校,每人只能報(bào)一所院校,則有()種不同的報(bào)名方法 ?

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:將院??闯稍?高中生看成位置,由重復(fù)排列的元素、位置的條件口訣: “元素可挑剩,位置不可缺”,重復(fù)排列的種數(shù)共有種,即將元素的個(gè)數(shù)作為底數(shù),位置的個(gè)數(shù)作為指數(shù).即:元素(院校)的個(gè)數(shù)為 3,位置(高中生)的個(gè)數(shù)為5,共有種。 ?

主觀題

1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線(xiàn)y=f(x)在點(diǎn)((1,f(1))處的切線(xiàn)方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)時(shí),f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時(shí)取得極小值

2、已知直線(xiàn)l的斜率為1,l過(guò)拋物線(xiàn)C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo);
(II)求|AB|.

答 案:(I)C的焦點(diǎn)為,準(zhǔn)線(xiàn)為由題意得l的方程為因此l與C的準(zhǔn)線(xiàn)的交點(diǎn)坐標(biāo)為(II)由,得設(shè)A(x1,y1),B(x2,y2),則因此

3、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求這個(gè)數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列第六項(xiàng)到第十項(xiàng)的和

答 案: ?

4、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬

答 案:如圖, ∵∠C=180°-30°-75°=75° ∴△ABC為等腰三角形,則AC=AB=120m 過(guò)C做CD⊥AB,則由Rt△ACD可求得CD==60m, 即河寬為60m ?

填空題

1、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?

答 案:

解 析:由于a//b,故

2、不等式的解集為() ?

答 案:

解 析:

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?