12職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點 → 2023年09月05日成考高起點每日一練《數(shù)學(xué)(理)》

2023年09月05日成考高起點每日一練《數(shù)學(xué)(理)》

2023/09/05 作者:匿名 來源:本站整理

2023年成考高起點每日一練《數(shù)學(xué)(理)》9月5日專為備考2023年數(shù)學(xué)(理)考生準備,幫助考生通過每日堅持練習(xí),逐步提升考試成績。

單選題

1、在的展開式中,的系數(shù)是

  • A:448
  • B:1140
  • C:-1140
  • D:-448

答 案:D

解 析:直接套用二項式展開公式: 注:展開式中第r+1項的二項式系數(shù)與第r+1項的系數(shù)不同,此題不能只寫出就為的系數(shù) ?

2、已知直線l:3x-2y-5=0,圓C:,則C上到l的距離為1的點共有()

  • A:1個
  • B:2個
  • C:3個
  • D:4個

答 案:D

解 析:由題可知圓的圓心為(1,-1),半徑為2 ,圓心到直線的距離為,即直線過圓心,因此圓C上到直線的距離為1的點共有4個.

3、圓的圓心在()點上 ?

  • A:(1,-2)
  • B:(0,5)
  • C:(5,5)
  • D:(0,0)

答 案:A

解 析:因為所以圓的圓心為O(1,-2)

4、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,則△ABC是()

  • A:以A為直角的三角形
  • B:b=c的等腰三角形
  • C:等邊三角形
  • D:鈍角三角形

答 案:B

解 析:判斷三角形的形狀,條件是用一個對數(shù)等式給出先將對數(shù)式利用對數(shù)的運算法則整理。 ∵lgsinA-lgsinB-lgcos=lg2,由對數(shù)運算法則可得,左 兩個對數(shù)底數(shù)相等則真數(shù)相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故為等腰三角形

主觀題

1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式 (Ⅱ)求證: (Ⅲ)求證: ?

答 案:(Ⅰ)由題意知(如圖所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直 ?

2、已知直線l的斜率為1,l過拋物線C:的焦點,且與C交于A,B兩點.(I)求l與C的準線的交點坐標;
(II)求|AB|.

答 案:(I)C的焦點為,準線為由題意得l的方程為因此l與C的準線的交點坐標為(II)由,得設(shè)A(x1,y1),B(x2,y2),則因此

3、已知數(shù)列的前n項和 求證:是等差數(shù)列,并求公差和首項。 ?

答 案: ?

4、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點((1,f(1))處的切線方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時,f'(x)時,f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時取得極小值

填空題

1、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?

答 案:

解 析:由于a//b,故

2、長方體的長、寬、高分別為2,3,6,則該長方體的對角線長為()

答 案:7

解 析:由題可知長方體的底面的對角線長為,則在由高、底面對角線、長方體的對角線組成的三角形中,長方體的對角線長為

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?