2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》9月4日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。
單選題
1、展開式中,末3項(xiàng)的系數(shù)(a,x 均未知) 之和為()
?
- A:22
- B:12
- C:10
- D:-10
答 案:C
解 析:末三項(xiàng)數(shù)之和為
2、函數(shù)的反函數(shù)是()
- A:
- B:
- C:
- D:
答 案:A
解 析:,由于x≤0,故
把x與y互換,得所求反函數(shù)為
3、的展開式中,x2的系數(shù)為()
- A:20
- B:10
- C:5
- D:1
答 案:C
解 析:二項(xiàng)展開式的第二項(xiàng)為,故展開式中的x2的系數(shù)為5.
4、設(shè)函數(shù),則f(x+1)=()
- A:x2+2x+1
- B:x2+2x
- C:x2+1
- D:x2
答 案:B
解 析:
主觀題
1、設(shè)函數(shù)f(x)=
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求 f(x)的極值
答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" />
(Ⅱ)
?
2、已知數(shù)列的前n項(xiàng)和
求證:
是等差數(shù)列,并求公差和首項(xiàng)。
?
答 案:
?
3、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得
所以AB =4.因此
所以
4、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)
時(shí),f'(x)
單調(diào)遞減,在區(qū)間
單調(diào)遞增.因此f(x)在
時(shí)取得極小值
填空題
1、設(shè)離散型隨機(jī)變量的分布列如下表,那么
的期望等于()
?
答 案:5.48
解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48
2、函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)共有()
?
答 案:2
解 析:當(dāng)x=0時(shí),y=-2=-1,故函數(shù)與y軸交于(0,-1)點(diǎn),令y=0,則有
故函數(shù)與x軸交于(1,0) 點(diǎn),因此函數(shù)
與坐標(biāo)軸的交點(diǎn)共有 2個(gè).