2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》9月3日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績。
單選題
1、設(shè)集合A={0,1},B={0,1,2},則A∩B=() ?
- A:{1,2}
- B:{0,2}
- C:{0,1}
- D:{0,1,2}
答 案:C
解 析:
2、在的展開式中,
的系數(shù)是
- A:448
- B:1140
- C:-1140
- D:-448
答 案:D
解 析:直接套用二項(xiàng)式展開公式:
注:展開式中第r+1項(xiàng)的二項(xiàng)式系數(shù)
與第r+1項(xiàng)的系數(shù)不同,此題不能只寫出
就為
的系數(shù)
?
3、參數(shù)方程(
為參數(shù))表示的圖形為()
- A:直線
- B:圓
- C:橢圓
- D:雙曲線
答 案:B
解 析:即半徑為1的圓,圓心在原點(diǎn)
4、已知α∩β=a,b⊥β,b在α內(nèi)的射影是b’,那么b'和α的關(guān)系是()
- A:b'//α
- B:b'⊥α
- C:b'與α是異面直線
- D:b'與α相交成銳角
答 案:B
解 析: ∴由三垂線定理的逆定理知,b在α內(nèi)的射影b'⊥α,故選B
?
主觀題
1、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)寫出向量
和
關(guān)于基底{a,b,c}的分解式;
(Ⅱ)求證:
(Ⅲ)求證:
?
答 案:(Ⅰ)由題意知(如圖所示)
?
2、建筑一個(gè)容積為8000,深為6m的長方體蓄水池,池壁每
的造價(jià)為15元,池底每
的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域
?
答 案:
3、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
4、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)
時(shí),f'(x)
單調(diào)遞減,在區(qū)間
單調(diào)遞增.因此f(x)在
時(shí)取得極小值
填空題
1、函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)共有()
?
答 案:2
解 析:當(dāng)x=0時(shí),y=-2=-1,故函數(shù)與y軸交于(0,-1)點(diǎn),令y=0,則有
故函數(shù)與x軸交于(1,0) 點(diǎn),因此函數(shù)
與坐標(biāo)軸的交點(diǎn)共有 2個(gè).
2、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?
答 案:
解 析:由于a//b,故