2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》9月1日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。
單選題
1、函數(shù)y=x2+1(x>0)的圖像在()
- A:第一象限
- B:第二象限
- C:第三象限
- D:第四象限
答 案:A
解 析:當(dāng)x>0時(shí),函數(shù)y=x2+1>0,因此函數(shù)的圖像在第一象限.
2、已知點(diǎn)M(-2,5),N(4,2),點(diǎn)P在上,且
=1:2,則點(diǎn)P的坐標(biāo)為()
- A:
- B:(0,4)
- C:(8,2)
- D:(2,1)
答 案:B
解 析:由題意得:
?
3、甲袋內(nèi)有2個(gè)白球3個(gè)黑球,乙袋內(nèi)有3個(gè)白球1個(gè)黑球,現(xiàn)從兩個(gè)袋內(nèi)各摸出1個(gè)球,摸出的兩個(gè)球都是白球的概率是
- A:
- B:
- C:
- D:
答 案:C
解 析:由已知條件可知此題屬于相互獨(dú)立同時(shí)發(fā)生的事件,從甲袋內(nèi)摸到白球的概率為P(A)=乙袋內(nèi)摸到白球的概率為
,所以現(xiàn)從兩袋中各提出一個(gè)球,摸出的兩個(gè)都是白球的概率為
4、設(shè)函數(shù)f(x十1)=2x+2,則f(x)=()
- A:2x-1
- B:2x
- C:2x+1
- D:2x+2
答 案:B
解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t換成x,因此f(x)=2x.
主觀題
1、如圖:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小數(shù)表示,保留一位小數(shù))
?
答 案:如圖
?
2、設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長軸在x軸上,離心率已知點(diǎn)P
到圓上的點(diǎn)的最遠(yuǎn)距離是
求橢圓的方程
?
答 案:由題意,設(shè)橢圓方程為 由
設(shè)P
點(diǎn)到橢圓上任一點(diǎn)的距離為 d,
則在y=-b時(shí),
最大,即d也最大。
?
3、設(shè)函數(shù)f(x)且f'(-1)=-36
(Ⅰ)求m
(Ⅱ)求f(x)的單調(diào)區(qū)間
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
當(dāng)x<-3時(shí),f'(x)>0;
當(dāng)-3
4、已知等差數(shù)列前n項(xiàng)和
(Ⅰ)求通項(xiàng)
的表達(dá)式
(Ⅱ)求
的值
?
答 案:(Ⅰ)當(dāng)n=1時(shí),由得
也滿足上式,故
=1-4n(n≥1)
(Ⅱ)由于數(shù)列
是首項(xiàng)為
公差為d=-4的等差數(shù)列,所以
是首項(xiàng)為
公差為d=-8,項(xiàng)數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項(xiàng)和公式得:
?
填空題
1、從某班的一次數(shù)學(xué)測試卷中任意抽出10份,其得分情況如下:81,98,43,75,60,55,78,84,90,70,則這次測驗(yàn)成績的樣本方差是() ?
答 案:252.84
解 析:
=252.84
?
2、函數(shù)y=的定義域是()
答 案:[1,+∞)
解 析:要是函數(shù)y=有意義,需使
所以函數(shù)的定義域?yàn)閧x|x≥1}=[1,+∞)
?