2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》9月1日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績。
單選題
1、從橢圓與x軸額右交點(diǎn)看短軸兩端點(diǎn)的視角為60°的橢圓的離心率() ?
- A:
- B:
- C:1
- D:
答 案:A
解 析:求橢圓的離心率,先求出a,c.(如圖) ,由橢圓定義知
2、過點(diǎn)(-2,2)與直線x+3y-5=0平行的直線是()
- A:x+3y-4=0
- B:3x+y+4=0
- C:x+3y+8=0
- D:3x-y+8=0
答 案:A
解 析:所求直線與x+3y-5=0平行,可設(shè)所求直線為x+3y+c=0,將點(diǎn)(一2,2)帶入直線方程,故-2+3×2+c=0,解得c=-4,因此所求直線為線為x+3y-4=0.
3、若tanα=3,則
- A:-2
- B:
- C:2
- D:-4
答 案:A
解 析:
4、設(shè)雙曲線的漸近線的斜率為k,則|k|=()
?
- A:
- B:
- C:
- D:
答 案:D
解 析:雙曲線漸近線的斜率為k故本題中k
主觀題
1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)
時(shí),f'(x)
單調(diào)遞減,在區(qū)間
單調(diào)遞增.因此f(x)在
時(shí)取得極小值
2、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)寫出向量
關(guān)于基底{a,b,c}的分解式
(Ⅱ)求證:
(Ⅲ)求證:
?
答 案:(Ⅰ)由題意知(如圖所示)
(Ⅱ)
(Ⅲ)
由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直
?
3、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得
所以AB =4.因此
所以
4、設(shè)函數(shù)f(x)=
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求 f(x)的極值
答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" />
(Ⅱ)
?
填空題
1、不等式的解集為()
?
答 案:
解 析:
2、長方體的長、寬、高分別為2,3,6,則該長方體的對(duì)角線長為()
答 案:7
解 析:由題可知長方體的底面的對(duì)角線長為,則在由高、底面對(duì)角線、長方體的對(duì)角線組成的三角形中,長方體的對(duì)角線長為